

Space Station

January

MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	
8 Space	9 Space	10 Space	11 Review	12	
Part 1 & 2 Part 1	Part 3 Part 2	Unit Test Part 3	Unit Test & Review	Review for final	
15	16	17	18	19	
Review for final	Review for final	Final Exam Part 1 Review	Final Exam Part 2 Final Exam	Go over Final Exam	
22	23	24 * PAT	25	26	
28	29	30	31 Semester 2 begins	1	

9-5 9-1

Qestionstofindat

- What's in space?
- How do we get to space?
- How do we survive in space?

PART 1: UNDERSTANDINGEARTH& SPACE

I Can...

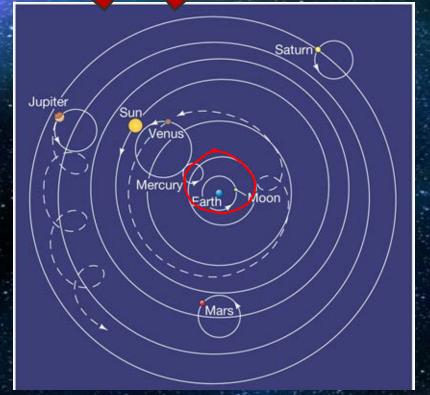
- Identify different perspectives of the nature of Earth and space
- Describe the characteristics of celestial bodies that make up the solar system
- Relate events on Earth to events/activities in space

WHAT'SINSPACE? (brainstorm)

https://youtu.be/1Eh5BpSnBBw

Phs

0



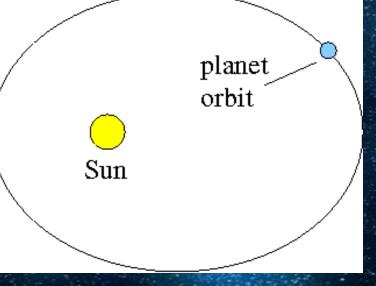
Nos

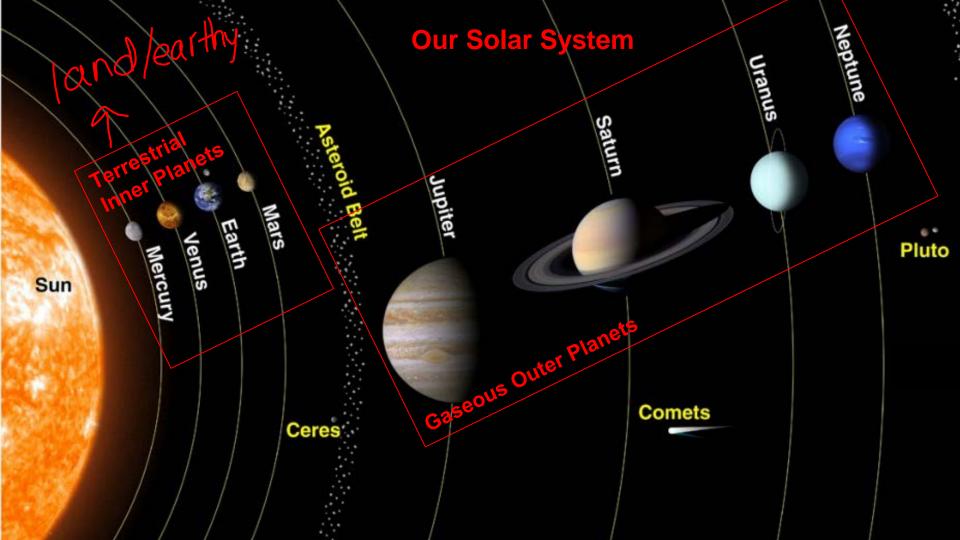
early ideas: the geocentric model

Earth is at the center of everything

• circular orbits

later ideas: the <u>heliocentric model</u>





even later ideas: elliptical orbits

Orbits are more like flattened circles, called ellipses

TRAITS	TERRESTRIAL / INNER PLANETS	GASEOUS / OUTER PLANETS	
distance from sun	close	far	
size	small	big	
gravity	weaker	stronger	
composition	rocky/ "Earthy"	gaseous	
length of a "day"	longer	shorter	
orbit time (length of a "year")	shorter	longer	
moons	none/few	many	
rings	no	yes	

Universal Gavitation

All planets experience gravity to some extent; in outer space, however, there is no gravitational force pulling things down...

How does gravity affect water in space???

The chart that contrasts the geocentric model of the solar system with the current heliocentric model is

A.	Geocentric Model	Current Heliocentric Model	
	Planets orbit the Sun	Planets orbit Earth	
	Orbits are circular in shape	Orbits are elliptical in shape	

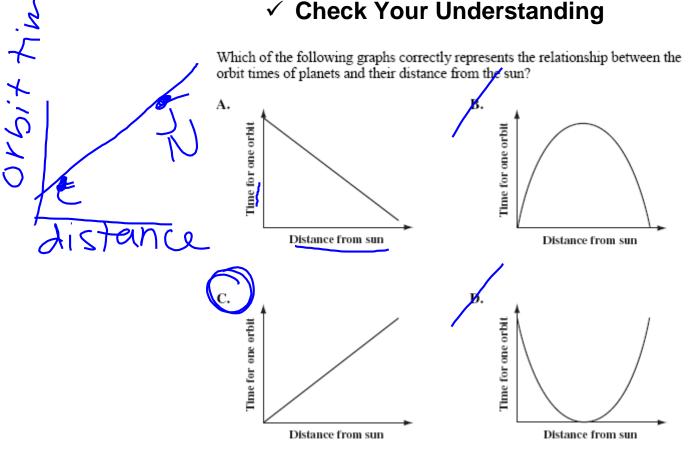
В.	Geocentric Model	Current Heliocentric Model
	· Planets orbit the Sun	Planets orbit Earth
	Orbits are elliptical in shape	Orbits are circular in shape
3		

C.	Geocentric Model	Current Heliocentric Model
\smile	Planets orbit Earth	Planets orbit the Sun
	 Orbits are circular in shape 	Orbits are elliptical in shape

D.	Geocentric Model	Current Heliocentric Model	
	Planets orbit Earth	Planets orbit the Sun	
	Orbits are elliptical in shape	Orbits are circular in shape	

Planet	Average distance from sun (AU)	D	iameter (km)	Period of revolution (Earth days or years)	Period of rotation (Earth days or hours)	Composition
Mercury	0.39		4,879	88.0 days	59.9 days	rocky
Venus	0.72		12,104	224.7 days	244 days	rocky
Earth	1.00		12,756	365.2 days	1.00 days	rocky
Mars	1.52	l	6,794	687.0 days	1.03 days	rocky
Jupiter	5.20		142,984	11.9 years	9.9 hours	gaseous
Saturn	9.54		120,536	29.5 years	10.7 hours	gaseous

What characteristics would you expect for a newly discovered planet 6.3 AU (astronomical units) from the sun?


- Inner or Outer planet?
- Terrestrial or gaseous?
- **Big** or small?

- Length of day?
 Length of year?

As a planet's distance from the sun <u>i</u>, the time it takes to orbit the sun <u>ii</u>.

The statement above is completed by the information in row

ROW	i	ii
A	increases	decreases
В	increases	increases
C	decreases	does not change
Ø	decreases	does not change
		ر <i>-</i>

Information about Jupiter	
Length of year = 142 Earth more Length of day = 10 Earth hou	

Jupiter spins on its axis <u>i</u> than Earth does, and it has an orbit that is <u>ii</u> than Earth's.

The statement above is completed by the information in row

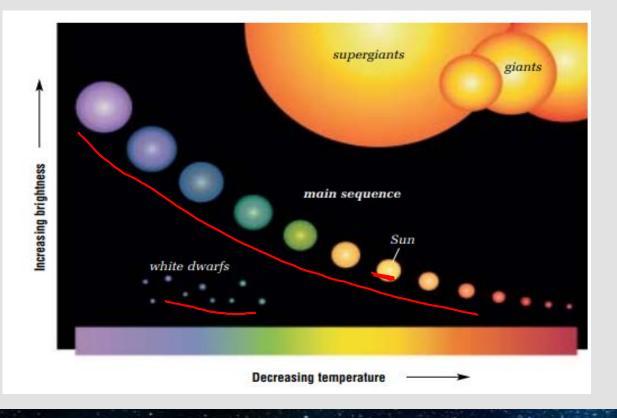
Row	i	ü
А.	slower	larger
B	slower	smaller
	faster	larger
D.	faster	smaller

stars

 hot, glowing balls of gas (mainly hydrogen)

not all the same

WISE 0855-0714 (distance 2014) 6 LIGHT YEARS WISE 1049-5319 (distance 2013) 4 LIGHT YEARS Alpha Centauri (susance 1030) Proxima Centauri (distance 1017) 2 LIGHT YEARS


ORT CLO

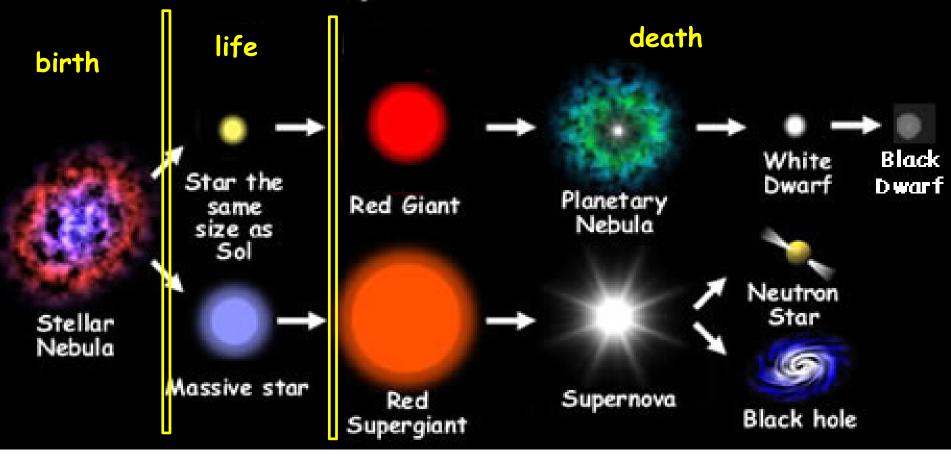
Sun

THE SUN'S CLOSEST NEIGHBORS

http://stars.chromeexperiments.com/

Comparing stars

stars


Where did/do they come from?

What happens to them?

nebula

vast cloud of gas and dust where stars form

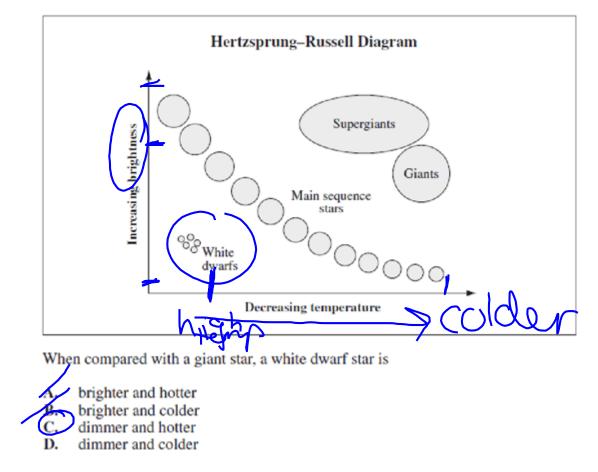
The Lifecycle of a Star

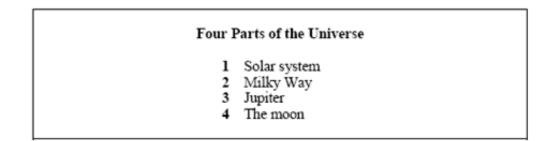
galaxy

a grouping of billions of stars, gas, and dust, held together by gravity

Our solar system is just one of many that belong to the Milky Way Galaxy. Every spec

you see represents another solar system...




constellation

Group of stars that form a pattern

> Ursa Major (the Great Bear)

gettyimages

Numerical Response

5. List the parts of the universe given above in order from the part with the smallest mass to the part with the greatest mass. and Smallest Greatest mass mass

(Record all four digits of your answer in the numerical-response section on the answer sheet.)

galaxy

netula

A _____ consists of stars, planets, and dust, which are formed from a _____i.

The statement above is completed by the information in row

Row	i	ii
А.	constellation	nebula
B.	nebula	galaxy
	galaxy	nebula
D.	galaxy	constellation